Midterm Test suggested solution

1. Let f be a continuous function defined on $[a, b]$ with $f(a)=f(b)$.
(a) Suppose f^{\prime} exists on (a, b). Show that there is $\xi \in(a, b)$ such that $f^{\prime}(\xi)=0$.

Proof. As f is continuous on $[a, b], f$ attains its maximum and minimum on $[a, b]$. That is to say $\exists p, q \in[a, b]$ such that

$$
f(p) \leq f(x) \leq f(q) \forall x \in[a, b]
$$

If $f(p)=f(q), f$ is a constant function. So $f^{\prime} \equiv 0$.
Suppose $f(p)<f(q)$, we may assume $f(q)>f(a)=f(b)$. Then q is a interior maximum. If $f^{\prime}(q)>0$, then $\exists \delta>0$ such that

$$
\frac{f(q+h)-f(q)}{h}>0 \quad \forall h \in(-\delta, \delta) \backslash\{0\}
$$

which contradicts with the fact that f attains maximum at q. Similarly, $f^{\prime}(q)$ cannot be negative. So $f^{\prime}(q)=0$.
(b) If the continuity of f at a and b is removed, does the part (i) still hold?

Proof. No. Choose $f:[0,1] \rightarrow \mathbb{R}$ where $f(0)=f(1)=0$ and $f(x)=x$ if $x \in(0,1)$.
2. Let f and g be continuous functions on $[a, b]$. Suppose that f and g are differentiable on (a, b) with $\left|f^{\prime}(x)\right| \leq 1 \leq\left|g^{\prime}(x)\right|$ on (a, b). Show that $|f(x)-f(a)| \leq|g(x)-g(a)|$ on $[a, b]$.

Proof. Let $x \in(a, b]$, by mean value theorem we can find $c, d \in(a, b)$ such that

$$
f(x)-f(a)=f^{\prime}(c)(x-a) \text { and } g(x)-g(a)=g^{\prime}(d)(x-a)
$$

Noted that c and d may not be the same. Then

$$
|f(x)-f(a)|=\left|f^{\prime}(c)\right||x-a| \leq|x-a| \leq\left|g^{\prime}(d)\right||x-a|=|g(x)-g(a)|
$$

When $x=a$, the inequality trivially holds.
3. Define $f:[-1,1] \rightarrow \mathbb{R}$ by $f(t)=-1$ if $t<0$ and $f(t)=1$ if $t \geq 0$. Let

$$
F(x)=\int_{-1}^{x} f(t) d t
$$

for $x \in(-1,1]$. If F differentiable on $(-1,1)$?

Proof. f is clearly integrable. So $F(a+b)=F(a)+\int_{a}^{a+b} f$ for a, b and $a+b \in[-1,1]$. For $h \in(-1,1)$,

$$
\frac{F(h)-F(0)}{h}=\frac{1}{h} \cdot \int_{0}^{h} f(t) d t
$$

If $h>0$, then

$$
\frac{F(h)-F(0)}{h}=\frac{1}{h} \cdot \int_{0}^{h} 1 d t=1
$$

If $h<0$,

$$
\frac{F(h)-F(0)}{h}=\frac{1}{h} \cdot \int_{0}^{h}-1 d t=-1
$$

So F is not differentiable at $x=0$. By fundamental theorem of Calculus, F is differentiable on c where f is continuous. So F is differentiable on $(-1,1) \backslash\{0\}$.
4. If f is nonnegative Riemann integrable function on $[a, b]$, does it imply \sqrt{f} Riemann integrable on $[a, b]$?

Proof. Yes. Since $f \in R[a, b]$, for any $\epsilon>0$, there exists $\delta>0$ such that whenever \mathcal{P} is a partition with $\|\mathcal{P}\|<\delta$,

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon^{2}
$$

For such \mathcal{P}, denote $\left(m_{i}\right) M_{i}=(\inf) \sup \left\{f(x): x \in\left[x_{i}, x_{i+1}\right]\right\}$.
And also $\left(\tilde{m}_{i}\right) \tilde{M}_{i}=(\inf) \sup \left\{\sqrt{f(x)}: x \in\left[x_{i}, x_{i+1}\right]\right\}=\left(\sqrt{m}_{i}\right) \sqrt{M}_{i}$.

$$
\begin{aligned}
U(\sqrt{f}, \mathcal{P})-L(\sqrt{f}, \mathcal{P}) & =\sum_{i=1}^{n}\left(\tilde{M}_{i}-\tilde{m}_{i}\right) \Delta x_{i} \\
& =\sum_{i=1}^{n}\left(\sqrt{M}_{i}-\sqrt{m}_{i}\right) \Delta x_{i}
\end{aligned}
$$

We split the sum into two parts.

$$
\begin{aligned}
U(\sqrt{f}, \mathcal{P})-L(\sqrt{f}, \mathcal{P}) & =\left(\sum_{M_{i} \geq \epsilon^{2}}+\sum_{M_{i}<\epsilon^{2}}\right)\left(\sqrt{M}_{i}-\sqrt{m}_{i}\right) \Delta x_{i} \\
& \leq \frac{1}{\epsilon} \sum_{M_{i} \geq \epsilon^{2}}\left(M_{i}-m_{i}\right) \Delta x_{i}+\sum_{M_{i}<\epsilon^{2}}\left(\sqrt{M}_{i}-\sqrt{m}_{i}\right) \Delta x_{i} \\
& \leq \frac{1}{\epsilon} \cdot \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}+\epsilon \cdot \sum_{i=1}^{n} \Delta x_{i} \\
& \leq \epsilon+\epsilon \cdot(b-a)=\epsilon(b-a+1)
\end{aligned}
$$

To conclude, $\forall \epsilon>0, \exists$ partition \mathcal{P} on $[a, b]$ such that

$$
U(\sqrt{f}, \mathcal{P})-L(\sqrt{f}, \mathcal{P})<\epsilon(b-a+1)
$$

5. Suppose f is Riemann integrable on $[0,1]$, find $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x$

Proof. The limit is zero. Since f is Riemann integrable, f is bounded. Let $M>0$ such that $|f(x)| \leq M$ on $[0,1]$.

$$
\left|\int_{0}^{1} x^{n} f(x) d x\right| \leq M \int_{0}^{1} x^{n} d x=\frac{M}{n+1} \rightarrow 0 .
$$

