
Midterm Test suggested solution

1. Let f be a continuous function defined on [a, b] with f(a) = f(b).

(a) Suppose f ′ exists on (a, b). Show that there is ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. As f is continuous on [a, b], f attains its maximum and minimum on [a, b].

That is to say ∃ p, q ∈ [a, b] such that

f(p) ≤ f(x) ≤ f(q) ∀ x ∈ [a, b].

If f(p) = f(q), f is a constant function. So f ′ ≡ 0.

Suppose f(p) < f(q), we may assume f(q) > f(a) = f(b). Then q is a interior

maximum. If f ′(q) > 0, then ∃δ > 0 such that

f(q + h)− f(q)

h
> 0 ∀h ∈ (−δ, δ) \ {0}

which contradicts with the fact that f attains maximum at q. Similarly, f ′(q)

cannot be negative. So f ′(q) = 0.

(b) If the continuity of f at a and b is removed, does the part (i) still hold?

Proof. No. Choose f : [0, 1] → R where f(0) = f(1) = 0 and f(x) = x if

x ∈ (0, 1).

2. Let f and g be continuous functions on [a, b]. Suppose that f and g are differentiable

on (a, b) with |f ′(x)| ≤ 1 ≤ |g′(x)| on (a, b). Show that |f(x) − f(a)| ≤ |g(x) − g(a)|
on [a, b].

Proof. Let x ∈ (a, b], by mean value theorem we can find c, d ∈ (a, b) such that

f(x)− f(a) = f ′(c)(x− a) and g(x)− g(a) = g′(d)(x− a).

Noted that c and d may not be the same. Then

|f(x)− f(a)| = |f ′(c)||x− a| ≤ |x− a| ≤ |g′(d)||x− a| = |g(x)− g(a)|.

When x = a, the inequality trivially holds.

3. Define f : [−1, 1]→ R by f(t) = −1 if t < 0 and f(t) = 1 if t ≥ 0. Let

F (x) =

∫ x

−1
f(t) dt

for x ∈ (−1, 1]. If F differentiable on (−1, 1)?
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Proof. f is clearly integrable. So F (a+ b) = F (a) +
∫ a+b
a

f for a, b and a+ b ∈ [−1, 1].

For h ∈ (−1, 1) ,

F (h)− F (0)

h
=

1

h
·
∫ h

0

f(t) dt.

If h > 0, then

F (h)− F (0)

h
=

1

h
·
∫ h

0

1 dt = 1.

If h < 0,

F (h)− F (0)

h
=

1

h
·
∫ h

0

−1 dt = −1.

So F is not differentiable at x = 0. By fundamental theorem of Calculus, F is

differentiable on c where f is continuous. So F is differentiable on (−1, 1) \ {0}.

4. If f is nonnegative Riemann integrable function on [a, b], does it imply
√
f Riemann

integrable on [a, b]?

Proof. Yes. Since f ∈ R[a, b], for any ε > 0, there exists δ > 0 such that whenever P
is a partition with ||P|| < δ,

U(f,P)− L(f,P) < ε2.

For such P, denote (mi)Mi = (inf) sup{f(x) : x ∈ [xi, xi+1]}.
And also (m̃i)M̃i = (inf) sup{

√
f(x) : x ∈ [xi, xi+1]} = (

√
mi)
√
M i.

U(
√
f,P)− L(

√
f,P) =

n∑
i=1

(M̃i − m̃i)∆xi

=

n∑
i=1

(
√
M i −

√
mi)∆xi.

We split the sum into two parts.

U(
√
f,P)− L(

√
f,P) =

 ∑
Mi≥ε2

+
∑
Mi<ε2

 (
√
M i −

√
mi)∆xi

≤ 1

ε

∑
Mi≥ε2

(Mi −mi)∆xi +
∑
Mi<ε2

(
√
M i −

√
mi)∆xi

≤ 1

ε
·
n∑
i=1

(Mi −mi)∆xi + ε ·
n∑
i=1

∆xi

≤ ε+ ε · (b− a) = ε(b− a+ 1).

To conclude, ∀ ε > 0, ∃ partition P on [a, b] such that

U(
√
f,P)− L(

√
f,P) < ε(b− a+ 1).
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5. Suppose f is Riemann integrable on [0, 1], find limn→∞
∫ 1

0
xnf(x) dx

Proof. The limit is zero. Since f is Riemann integrable, f is bounded. Let M > 0

such that |f(x)| ≤M on [0, 1].∣∣∣∣∫ 1

0

xnf(x) dx

∣∣∣∣ ≤M ∫ 1

0

xn dx =
M

n+ 1
→ 0.
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